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Abstract

This investigation addresses the inverse problem of the retrieval of the macroscopic Young’s modulus and Poisson ratio

of light fluid-saturated cellular materials from the measured resonance frequencies of their vibrational response. The latter

is shown to be generally nonlinear for all except very small excitations. In order to remain in the linear regime, and thus

avoid ambiguities in the characterization of the material, we employ lightweight piezoelectric transducers and sensors and

a low-noise amplifier for the acquisition of dynamic response data. The cellular materials under investigation

(polyurethane, melamine) are shown to behave as isotropic, (equivalent) homogeneous elastic solids with Rayleigh

damping (equivalent to a rheological model having the same dependence of attenuation on frequency) in the frequency

band of interest. Our viscoelastic model is validated by comparing its predictions of the dynamic response of the specimens

to the predictions of the more complete Biot interaction model. The computations with both of these models are carried

out by means of 3D finite element (FE) codes for a variety of specimen shapes and sizes. Once the simpler viscoelastic

model is validated, it is then employed to compute the trial resonance frequencies (which are the solutions of an eigenvalue

problem associated with this model) during the inversion process. The cost function, which is a measure of the discrepancy

between the trial and measured resonance frequencies for a number of vibrational modes, is constructed and then

minimized by the Levenberg–Marquardt optimization algorithm in order to recover the sought-for moduli. Finally, a

discussion is presented concerning the influence of the size and shape of the specimens, as well as the number of employed

modes, on the uniqueness and quality of the inversion.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this work is to develop an experimental data-acquisition technique and inversion scheme for
recovering the macroscopic elastic moduli and damping factors of specimens of arbitrary shape and size,
composed of cellular materials.
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To do this, we employ an inversion method, used in the past (e.g., Refs. [1,2]) to characterize dense
homogeneous (such as metals) or inhomogeneous (such as composites) solid specimens, whereby the processed
data concern the relatively low resonance frequencies ðo3 kHzÞ of various mechanical modes of the specimen.
However, this method cannot be transposed to low-density cellular materials without precaution. In fact, the
acquisition of data must be made in the linear response regime (which, for cellular materials, requires very
small excitations, giving rise to very weak responses) and an appropriate model (incorporating as much as
necessary, but not more, of the physics of the vibratory phenomena) must be employed in the inversion scheme
to describe the (linear) dynamic response of the porous specimen.

This study is undertaken in the framework of the vibroacoustic characterization of bone for the detection of
osteoporosis. When osteoporosis (which is an imbalance that results when bone resorption (the part of
remodeling consisting of breaking down and assimilating) exceeds bone formation) sets in, bone becomes
more fragile, with fewer connected and thinner trabeculae (in the form of rods and plates), and more porous
cortical components. It has been demonstrated that the elastic and shear moduli (obtained by static
mechanical tensile and torsional testing) of human femoral cortical bone in the longitudinal direction decrease
significantly with the porosity (assessed by means of histology) [3]. Our aim is ultimately to employ the tool
developed herein (which applies to specimens in their natural size and shape, contrary to other tools [4–7]
which require the specimen to be cut into specific shapes in order to benefit from the existence of simple
interaction models for these shapes) to establish a quantitative correlation (if it exists) between the
macroscopic elastic moduli of bones having various porosities and their resistance to fracture.

Cancellous (also called trabecular) bone is the principal component of short bones such as vertebrae and is
also found at the extremities of long bones (proximal tibia and femur) where it is surrounded by a shell of
dense compact (cortical) bone. The mechanical behavior of cancellous bone is typically that of a cellular
material. For instance, the compressive stress–strain curve is divided into three regimes characteristic of all
cellular solids, and the moduli and strength all vary with density in the way expected of a foam [8]. Cancellous
bone supports large static and cyclic loads.

Foaming materials (e.g., metals and polymers) into cellular solids, made up of an interconnected network of
solid struts (rods) or plates, augments their mechanical properties, making them attractive for energy-
absorbing applications. The techniques used for foaming are well documented in Ref. [8].

Cellular materials are poroelastic (or poroviscoelastic), so that their vibroacoustic behavior can be modeled
by the Biot theory [9,10]. This theory, which assumes the solid phase to be saturated by a fluid phase, takes
into account the motions of both the solid frame and the pore fluid, as well as their relative motions (which is
the cause of viscous losses) [11,12]. The poroelastic material is described by five geometrical parameters (the
porosity f, flow resistivity sfr, tortuosity a1, viscous characteristic length L, thermal characteristic length L0)
and by the mechanical parameters of the frame and fluid. Recovering all these parameters by inversion of the
measured acoustic waves propagating through the fluid in the pores, and through the elastic stress waves
carried through the solid frame of the material, is a possible, but necessarily difficult task. It can be done using
the Biot theory, or, perhaps, with the somewhat simpler Attenborough [13] and Allard [14] models. Another
approach is to consider several of the parameters to be known a priori, and to invert the data for the other
parameters via the Biot [15,16], Biot–Johnson–Champoux–Allard [5], and Johnson–Champoux–Allard (for
rigid-frame porous materials, also known as equivalent fluid [17]) models. But all of these models are very
expensive in terms of computational cost and memory and the data are either not sensitive to variations of
certain parameters, and/or it may not be necessary to search for many of these parameters as such if their
effect on the strength (or other property) of the material is either negligible or is globalized in the effective
elastic moduli (or wavespeeds and attenuation factors) of the specimen.

This may explain why simple, relaxational, models for the acoustical properties of porous media (these are
phenomenological models for sound propagation) which involve just a few parameters have been so popular.
An extreme example of these simple models includes the empirical equations of Delany and Bazley [18,19] with
just one adjustable parameter, the flow resistivity sfr.

Fairly comprehensive studies of the influence of the Biot–Johnson–Champoux–Allard model parameters on
ultrasonic wave propagation in plate-like specimens of human cancellous bone, as well as methods for solving
the inverse problem, have been reported by several authors [5,15,20,21]. It should be noted, in connection
with carrying out a similar study using vibrational data, that the resonance frequencies and damping
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(the observables) of vibrating cellular structures not only depend on their elastic moduli and geometrical
parameters but also strongly on the size and shape of the specimen (also, unfortunately, on the boundary
conditions).

In a study of the solid frame for relatively rigid materials, taking into account the sole inertial interactions,
an approximate calculation of the resonance frequencies of a porous plate has been proposed and the
influences of porosity, tortuosity and permeability have been studied in Ref. [22]. It was found that the natural
frequency of the dominant mode increases with increasing porosity and permeability, and decreases with
increasing tortuosity, whereas the damping factor increases with increasing porosity and decreases with
increasing tortuosity, while reaching a maximum value at a frequency determined by the three parameters.

Notwithstanding these facts, it is tempting (and certainly useful, in the inverse problem context) to bypass
completely models employing geometrical parameters such as porosity and tortuosity, and to incorporate their
effect, in a homogenized way, into the elastic moduli (considered to be complex, in order to take into account
dissipation of energy). This amounts to replacing the rather complicated Biot-like models by an elastic or
modified elastic model incorporating damping effects (which we term the viscoelastic model herein). But in
order for this to be legitimate, in the sense that it does not entail large errors in the reconstructed parameters of
interest, we must first show (in the direct problem context) that the (simpler) viscoelastic model gives rise to a
vibrational response that is close to that of the (more comprehensive) Biot-like model.

Thus, this paper starts with a description, in Section 2, of the experimental setup we use to acquire the
vibration data (which constitutes the input to the inversion scheme). In Section 3 we present, and compare, the
Biot–Johnson–Champoux–Allard model (BJCAM) and viscoelastic models (and their 3D, FE implementation
schemes). The Rayleigh damping device employed in the viscoelastic model is related to a rheological model in
this section. The good agreement between the BJCAM and viscoelastic models allows us to employ the simpler
viscoelastic model in the inversion scheme also described in Section 3. The results and discussion are given in
Section 4. The conclusions are given in Section 5.

2. The experimental setup for data acquisition

The experimental setup is designed for the acquisition of vibrational response data, in particular the
resonance frequencies and spectra, that constitute the input to the inversion scheme for the recovery of the
Young’s modulus, Poisson ratio and damping factors of the cellular material.

Most of the methods that have been employed until now for characterizing cellular (and other) materials
have often employed electromechanical shakers, accelerometers and laser vibrometry [23,24]. These devices
are unwieldy, and/or expensive, and/or are not particularly well adapted to specimens with uneven, porous
boundaries such as foams.

For this reason we chose to excite, and measure the motion of, the surface of the cellular material, with a
minimum mass-loading effect on the structure, by means of a small (1.0 cm diameter), light-weight (0.11 g)
axial piezoelectric transducer (PZT) and a similar sensor, both made of a thin disc of piezoelectric ceramic
bonded to a thin metal diaphragm [25]. These devices are routinely incorporated into buzzers (Kingstate
KPEG165) and telephone ringers (i.e small battery-powered equipment) to deliver high audible sound output
from a small (milliwatt) energy input.

When the PZT sensor is bonded to a deforming vibrating surface, a mechanical deformation is induced in
the polarized crystal (resulting from tension and twisting of the sensor) leading to the generation of an electric
charge. The PZT sensor measures a deformation (strain) [26]. Likewise, when the PZT crystal is submitted to a
modulated electrical excitation, it vibrates (and emits sound waves). The light weight, small size and flat
structure form of the PZTs facilitate their mechanical fixation on cellular structures like foam, with negligible
influence on their vibration responses as compared, for instance, to accelerometers. The apparent
disadvantage of the PZT is that, as an exciter, it can deliver only small levels of vibrational inputs to the
specimen, and as a sensor, it delivers only very small electrical outputs. As we shall see later, the low level of
vibrational input it delivers is another good reason for employing PZT actuators, and the low output level can
be compensated for by the use of suitable amplification devices.

The samples are suspended on a test rig using nylon threads (corresponding to free–free boundary
conditions). The exciter and sensor are bonded (using a thin double-sided scotch tape) laterally onto the
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Fig. 1. The experimental setup.
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specimen, opposite each other, as depicted in Fig. 1. The scotch is cut exactly to the size of the PZT discs to
limit the introduction of extra damping effects into the measurements.

The exciter is driven in discrete frequency and amplitude steps using a Signal Recovery 7265DSP
programmable lock-in oscillator and a Brüel and Kjær (B&K2706) power amplifier (Fig. 1). The response
signal captured by the sensor is amplified using an NF SA-200F3 low-noise preamplifier connected to the
input of a 7265DSP synchronous demodulator. The data from the amplifier are directly read by a PC via an
HPIB (IEEE 488) bus.

The first two specimens (named PE1 and PE2 ) are disc-shaped (10 cm diameter, 2 cm thickness), cut from
two different samples of melamine foam as is practiced for the characterization of the acoustic parameters of
absorbing materials in an (e.g., B&K4002) impedance tube.

The third specimen (PE3) was cut into the form of a square ð7 cm� 7 cmÞ thick plate (5 cm thickness) from
the same panel as PE1.

Melamine, a strong organic base with the chemical formula C3H6N6, is foamed into a micro-fibrous
structure, resulting in an open cell material. It has become the standard synthetic vitreous fiber (SVF) material
for sound absorption in anechoic chambers (such as the one at the Laboratoire de Mécanique d’Acoustique).
Previously, the SVF were manufactured mostly from glass, natural rocks, slag and kaolin clay. These materials
are still employed as insulation wools.

The fourth specimen (PE4) is made of polyurethane and was precisely cut into a thick, short hollow cylinder
(8 cm exterior diameter, 6.5 cm interior diameter, 4 cm longitudinal dimension).

Other characteristics of the samples are given in Table 1.
The response spectra are measured from 100Hz ( just below the first resonance frequency of the specimens)

up to 3 kHz.

2.1. Nonlinear behavior of the specimens

Evidence from our experiments (and elsewhere; see e.g., Refs. [27,28]) shows that cellular specimens exhibit
nonlinear behavior. This is demonstrated by plotting their vibratory response as a function of the amplitude of
excitation [29].

Four spectral responses of sample PE1 were measured by employing variable excitation amplitude voltage
levels (0.02, 0.04, 0.06 and 0.08V), applied to the transducer. The curves depicting the amplitudes and phases
for the different levels of excitation are plotted in Fig. 2. The shift in the resonance frequencies with the
increase in the level of excitation is more noticeable in the phase plot. The resonance frequencies shift
downwards as the excitation amplitude is increased.

The inversions were done with data generated from the lowest amplitude of excitation, corresponding
to a linear response of the specimens. These data had sufficient signal to noise ratios due to the use of the
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Table 1

The density calculated from the measured weights (employing a Sartorius L2200S balance) and calculated volumes of the disc-shaped

samples (diameter, 10.0 cm)

Specimen Form Thickness (cm) Density ðkgm�3Þ

PE1 Thick disc 2.9 8.34

PE2 Thick disc 3.1 8.3

PE3 Thick plate – 8.3

PE4 Hollow cylinder 1.5 32

Note that PE1 and PE2 are cut from different samples. The hollow cylinder has an exterior diameter of 8.0 cm and a height of 4.0 cm.
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high-sensitivity PZT sensors in association with a very low-noise amplifier connected to a synchronous
demodulator/detection system.

3. Ingredients of the method for the recovery of the elastic moduli and damping factors of the specimens

3.1. Preliminary remarks

Most schemes for solving inverse problems (such as that of the recovery of the constitutive parameters of a
specimen) proceed by solving the associated direct problem for a succession of trial values of the parameters of
the configuration. This process is iterative and designed so that the successive trial values converge to the
hopefully correct parameters of the configuration one wishes to characterize.

These schemes thus have three key ingredients: (i) the data constituting the response of the specimen to a
known excitation, (ii) the model used to solve the aforementioned successive direct problems and (iii) the
scheme for adjusting the successive values of the trial parameters so as to minimize the cost function.

3.2. Models for solving the direct problem

From the previous remarks, it can easily be appreciated that the choice of model for solving the direct
problem is a key issue in that the numerical code stemming from this model will be used many (e.g., hundreds
of) times during the iterative process involved in the resolution of the inverse problem. This model must
therefore be as simple as possible (to speed up each resolution of the direct problem), while incorporating as
much as possible of the physics of the most noticeable phenomena caused by the excitation of the specimen.
This contradiction can only be resolved by a compromise.
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As mentioned in the introduction, we have identified two candidate models for solving the direct problem.
The first one is less costly in computation time and is the one actually employed for solving the inverse
problem. The second one incorporates more of the physics, but, of course, requires intensive computations
and is used only for the validation of the first model.
3.2.1. The first (viscoelastic) model

The specimen is initially visualized as a linear, isotropic elastic solid 3D body of arbitrary shape, attached to
its environment by some sort of (we choose the free–free) boundary condition, and submitted to some sort of
time-varying excitation. The microscopic irregularities and biphasic nature of the original porous medium are
not explicitly taken into account; i.e., the medium is thought of as being homogenized on the scale of the
micro-irregularities (but macro-irregularities can be accounted: for by the 3D geometrical model).

The body vibrates in response to the excitation and this phenomenon is described by the classical equations
of the elastodynamics of continuous elastic media. Dissipation in the body is then accounted for by the
introduction of Rayleigh damping.

The integral version of the governing partial differential equations (PDEs), which takes the form of the
principle of virtual work expressed in Appendix A, is discretized so as to lead to

dunfMnm €um
þ ðCnm

ðMÞ þ Cnm
ðKÞÞ _u

m þ Knmum � Png ¼ 0, (1)

wherein dun is the displacement variation, m ¼ 1; 2 . . . , n ¼ 1; 2 . . . , Mnm, Knm are the mass and stiffness
matrices, respectively, Cnm

ðMÞ and Cnm
ðKÞ the mass and stiffness viscous damping matrices, respectively, and Pn the

external load vector. The displacement, velocity and acceleration are given by um, _um and €um, respectively.
Eq. (1) is the basis of the 3D finite element (FEM) implementation of the viscoelastic or elastic (for zero
damping) models.

In order to compute the resonance frequencies, the damping matrices and the applied force are set to zero in
Eq. (1). The eigenvalue problem for the natural modes is then to solve

ðl2eigM
mn þ KmnÞfn

¼ 0, (2)

with leig being the eigenvalue and fn the eigenvector (i.e., the mode of vibration).
As will be explained in more detail further on, the necessity of solving the eigenvalue problem makes itself

felt in the inversion process, during which a subset of the natural frequencies, arising from a computation
involving trial values of the elastic moduli of the specimen, is compared to the measured resonance
frequencies.

A simple (Rayleigh damping) method is employed to account for the dissipation in the specimen, and
manifests itself by the equivalent damping Ceq term appearing in Eq. (1). More specifically, Rayleigh damping
is expressed by

Ceq ¼ Cnm
ðMÞ þ Cnm

ðKÞ ¼ aMnm þ bKnm, (3)

where a and b are constants (characteristics of the material, which, like the elastic moduli, will also be
identified).

It can be shown that the damping ratio xn of system (1), with assumption (3), is the following function of
natural frequencies on [30]:

xn ¼
a

2on

þ
bon

2
. (4)

Rayleigh damping can be related to the standard linear solid equation having a similar dissipative behavior.
The creep function and the dissipative behavior of materials are described by using the viscoelastic constitutive
equations originating in models composed of weightless springs (no inertial effects are present) and dash-pots
(consisting of loosely fitting pistons in cylinders filled with a viscous fluid) [31].

The rheological interpretation of Rayleigh damping, using a particular generalized Maxwell (GM) model
(Fig. 3), has been given in Ref. [32]. The equations relating a and b to the mechanical parameters of the GM
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model are derived in Appendix B and are given by

a ¼ EðZ1 þ Z2Þ=Z
2
1; b ¼

Z2
E
. (5)

Dissipation can be quantified by using the quality factor Q. Its inverse Q�1 is the dissipation factor. The
quality factor is also defined as twice the time-averaged strain energy density ðhViÞ divided by the time-
averaged dissipated energy density ðhDiÞ [31] ðQ ¼ 2hVi=hDiÞ. The dependence of Q�1GM on frequency is then

Q�1GM ¼
EðZ1 þ Z2Þ

Z21o
þ

Z2
E
o. (6)

The frequency response, for a point-like harmonic force applied to the specimen, is computed using Eq. (1)
after the mechanical parameters have been recovered by inverting the measured resonant frequency data with
the help of the model given by Eq. (2).

As explained more fully further on, this response is compared to the experimental spectral response to
obtain the optimal values of a and b.

The numerical code associated with the 3D FE (visco) elastic model(s) is constructed with the help of a
commercial FE software (Abaqus).

Accurate resonance frequency data for thick plates can also be generated by employing the 3D Ritz analysis
[33] or by the differential quadrature (DQ) method [34] for moderately thick plates. Since the computation
cost and precision of the 3D FE model depend on the number of elements chosen, the tables provided in [33]
were used to make an optimal choice of the number of elements for the 3D FE (visco) elastic computations.

3.2.2. The second (Biot) model

The Biot model differs from the previous one in that the porous nature of the material of the specimen is
explicitly taken into account. In fact, the medium is considered to have two components: the (elastic) solid
frame (replaced by a homogenized solid) and the saturating fluid. The motions of these two components are
described by a coupled system of PDEs. This coupling shows up notably in what appears as a viscous damping
term which vanishes for vanishing relative motion of the two components and a volumetric coupling term.

In the fu; pg frequency domain formulation of the Biot theory formulated by Atalla [35], the mean
displacement field u of the frame and the mean sound pressure p in the fluid phase over a homogenization
volume are the variables of interest. The variational formulation of the governing differential equations is
given in Appendix C. Eqs. (C.1) and (C.2) are the basis for the FE implementation of the Atalla–Biot model.
Tilded variables therein are complex-valued, the imaginary parts of which represent dissipation effects in the
material. Each of the nodes of the FE mesh has four degrees of freedom. Eqs. (C.1) and (C.2) are discretized
using piecewise hierarchic polynomials as basis functions. The resulting sparse symmetric system of linear
equations is solved, for each frequency, using a sparse direct solver.

3.2.3. Comparison of the two models

We employed the Biot model, implemented in our numerical code constructed from the formulation
explained in Section 3.2.2, to generate reference solutions, concerning the response at a point on the surface of
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a 2.5 cm thick, melamine disc specimen to an applied concentrated force of 1N at a point opposite to the first
one on the disc surface. The nodal force acting on the frame of the absorbing material models the mechanical
excitation of the sample caused by the actuator. Seven thousand two hundred FEs were used, resulting in
133,000 unknowns. Each frequency took 3.5 h of computation time on the SGI Origin3800 computer of the
Center for Information Services and High Performance Computing of the Technische Universität in Dresden,
Germany. This computation required previous knowledge of Young’s modulus and Poisson ratio which were
taken to be E ¼ 160 kPa, n ¼ 0:4, as well as the geometric parameters (f ¼ 0:97, a1 ¼ 1:015, L ¼ 99mm,
L0 ¼ 283mm), which were recovered from the inversion, with the help of the Johnson–Champoux–Allard
model (equivalent fluid model [36]—the skeleton frame is considered motionless), of experimental acoustical
reflection and transmission data [17] relative to the melamine disc excited by the waves radiated by 50, 100 and
200 kHz air-coupled ultrasonic transducers.

The 3D FEM (visco) elastic model, implemented by Abaqus software, was made to produce results, for the
same specimen excited in the same manner. The specimen was discretized using 272 (1483 nodes) 20-node
quadratic hexahedron brick elements (type C3D20R [37]). The total cpu time for the calculation of 128
frequencies (200–3 kHz) was 328 s on an Intel P4 3GHz personal computer. This much shorter computation
time constitutes a strong motivation for choosing the viscoelastic model rather than the Biot model for the
inversion, provided, of course, that the viscoelastic model gives results similar to those of the Biot model.

The comparisons in Figs. 4 and 5 show that the viscoelastic model indeed gives rise to solutions quite close
to those of the Biot model. This fact enabled us to choose the viscoelastic (rather than the Biot) model for the
purpose of the inversions.

3.3. Method of solution of the inverse problem

As briefly mentioned above, the inversion proceeds in two distinct steps (actually three steps, because the
density of the sample is first obtained from measurements of its geometry and weight).

The (real) elastic moduli E; n are first retrieved by use of: (a) the data consisting of the experimentally
observed resonance frequencies of the specimens vibrating under free–free boundary conditions, and (b) the
elastic 3D FEM model (i.e., the viscoelastic model with no damping) to solve the eigenvalue problem via (2)
(see, e.g., Ref. [38, pp. 570–500]) for the model values of the resonance frequencies associated with the trial
values of E; n at each iteration step during the inversion (see Fig. 6).
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A cost function J, constituting the measure of the discrepancy between the model resonance frequencies and
the experimental resonance frequencies, is computed for each set of trial values of E; n:

JðE; nÞ ¼
Xm

n¼1

w2
nff

n
experiment � f n

modelðE; nÞg
2, (7)
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with wn being the weighting coefficient for the mode, f n
experiment the target resonance frequency obtained by

experiment, n the mode number, m the number of employed modes and f n
model the natural frequency furnished

by the model for the current trial values of E and n.
The search for the optimal set E; n which minimizes J is achieved automatically, and in an iterative manner,

by the Levenberg–Marquardt optimization algorithm (i.e., the lmdif routine from Minpack, implemented in
the Argonne National Laboratory).

The final step of the inversion procedure is to obtain the Rayleigh parameters a;b of the specimen by
minimizing the discrepancy between the measured spectral responses and the responses computed by means of
the viscoelastic model incorporating the previously obtained optimal set E; n.
4. Results and discussion

4.1. Preliminaries

The vibration spectral response amplitudes and phases are first plotted for each specimen and the resonance
frequencies are obtained by correlating the amplitude peaks to sudden phase variations.

These measured resonance frequencies are displayed in Table 2 for the various specimens under
examination.

The elastic moduli and damping parameters are then retrieved by the procedure outlined in the previous
section.
4.2. Particular aspects of the cost function

4.2.1. Uniqueness as manifested by a single minimum

Good practice for solving inverse problems requires that the recovered solution be unique. An indication of
uniqueness can be found by plotting the cost functions, given by Eq. (7), as a function of the parameters one
wishes to recover.

A cost function for PE1, computed with E in the range 140–200 kPa and the Poisson ratio in the range
0.0–0.5, when all the modes are attributed equal weights ðwn ¼ 1Þ, is depicted in Fig. 7.

The noteworthy feature of this figure, typical of what occurs for all the specimens under examination, is that
the solution is unique (the minimum of the cost function occurs at E�160 kPa and n�0:4).
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Fig. 7. The cost function to be minimized for the recovery of two variables (Young’s modulus and the Poisson ratio for the melamine

sample PE1) as a function of these variables.
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4.2.2. Choice of weights

The resonance frequency of a natural mode may not be precisely determined for several reasons: mode-
coupling, difficulties in distinguishing between the different types (compression, torsion and flexural) of modes
and the presence of noise. In such cases it is best to assign weights and attribute the larger values to the more
precisely determined natural frequencies. It is thus preferable to choose, if possible, the geometry of the
specimen that will provide a vibration spectrum with well-separated resonance peaks.

4.2.3. Choice of the number of resonance frequencies

Increasing the number (larger m) of resonance frequencies in the cost function generally improves the rate of
convergence of the inversion scheme. In practice, increasing m means including the higher vibrational modes.
These modes are often more attenuated than the lower ones resulting in their peaks of resonance not being
well marked. The mode density also increases with m such that some peaks of resonance become confounded
and as a consequence become difficult to distinguish.

In Ref. [16], the accuracy of the reconstruction of the depth of the sea by echolocation was shown to depend
on the sharpness of the cost function in the neighborhood of one of its minima. The sharpness was determined
from the calculation of its absolute curvature.

Herein the slope of the cost function around the minima is analyzed. This can be illustrated by calculating
the slope of J with a fixed value of the Poisson ratio. In Ref. [33], the resonance frequencies ðonÞ obtained by
solving an eigenvalue problem for thick elastic plates with varying diameter (R) and thickness (h) ratios are
given in table form as a function of the non-dimensional frequencies ln40 with on ¼ ðln=RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð2rð1þ nÞÞ

p
.

This is similar to the resonance frequencies of the Euler–Bernoulli beam model. The slope of the cost function
using this model is given by

dJðEÞ

dE
¼
Xm

n¼1

ln

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2rð1þ nÞE

s
ðon � oexperiment

n Þ, (8)

when ðon � oexperiment
n Þo0, the point is situated on the left side of the minimum of J and the slope is negative,

so that increasing the number of terms in the series increases the absolute value of the (negative) slope. A
similar reasoning shows that when the point is on the right side of the minimum of J, increasing m increases
the absolute value of the (positive) slope.

An illustration of this finding is given in Fig. 8 wherein the cost function is computed by varying Young’s
modulus with the Poisson ratio fixed at 0:4. This figure reveals that employing the largest (five) number of
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Fig. 8. The influence of the number of modes employed in the inversion scheme on the sharpness of the cost function for sample PE1.
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modes for the inversion provides the sharpest minimum, thus allowing a faster convergence and a more precise
solution of the inverse problem.
4.3. The outcome of the inversion scheme for samples PE1 and PE2

The recovered parameters, Young’s modulus and Poisson ratio for the two melamine disc samples PE1, PE2
and the hollow polyurethane cylinder PE4, are given in Table 2.
4.4. Comparison between experimental and model responses for samples PE1 and PE2

Acceleration and strain were computed by the 3D viscoelastic FEM model employing the elastic moduli and
damping factors obtained by the previously described inversion procedure. The computed strain (e22) is picked
on a centroid of the element (this is an interpolation of integration point quantities to the centroid of an
element). The position of the element corresponds to that of the measurement. The model and experimental
responses are depicted in Fig. 9.
Table 2

Measured resonance frequencies (in Hz) and inversion results (the room temperature was 25 �C and the atmospheric pressure was

1:013� 105 Pa during the experiment) compared to some reported values for samples PE1 and PE2

Sample f 1
exp f 2

exp f 3
exp f 4

exp f 5
exp f 6

exp
E n Z1 Z2

PE1 290 542 612 633 726 – 160 0.40 133 0.16

PE2 292 515 – – 870 163 0.40

PE3 – – – – – 160 0.40 133 0.12

PE4 341 680 850 911 0.28 2:3� 103 13.7

The units of E are in kPa and those of viscosity (Z1 and Z2) are in Nm�2s (also termed Pascal seconds (Pa s)). In Ref. [43], E ¼ 160kPa,

n ¼ 0:44 for PE1, PE2 and PE3.
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Fig. 9. Response of the melamine 2.5 cm thick disc. Comparison between the strain measured by the PZT sensor and the computed strain

using the 3D viscoelastic FEM with Rayleigh damping. The Rayleigh damping parameters for this fit are a ¼ 1200 and b ¼ 1� 10�6.
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4.5. The outcome of the inversion scheme for sample PE3

The recovered parameters, Young’s modulus and Poisson ratio for the square melamine ð7 cm� 7 cm�
5 cmÞ thick plate specimen (PE3) are given in Table 2.

The elastic moduli and Rayleigh damping parameters for the thick plate specimen are found to be
approximately the same as those of the disc samples. This is consistent with the fact that all of these samples
are made of the same material (melamine) and that the elastic moduli and damping parameters are inherent to
the material and should not depend on the sample size and shape.
4.6. Comparison between experimental and model responses for sample PE3

The recovered elastic constants and Biot parameters were employed to compute the vibrational response of
the square melamine ð7 cm� 7 cm� 5 cmÞ thick plate specimen (PE3). This response is compared to the
experimental response (actually, the average response of five such specimens) in Fig. 10.
4.7. The outcome of the inversion scheme for sample PE4

A different material (polyurethane) in the form of a hollow cylinder (specimen PE4, Fig. 11) was
characterized in the same way as above.

The recovered parameters, Young’s modulus and Poisson ratio, for this specimen are given in Table 2.
4.8. Comparison between experimental and model responses for sample PE4

In Fig. 12, we compare the measured response of the hollow cylinder specimen PE4 to the computed 3D
FEM viscoelastic response (for a ¼ 400 and b ¼ 1:5� 10�5).
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Fig. 10. Comparison between measured, averaged response of five quasi-identical PE3 (melamine ð7 cm� 7 cm� 5 cmÞ) thick plate

specimens with the computed viscoelastic FEM response (i.e., the strain e22 on centroid of element at the measurement point). The

computation is made with the Rayleigh damping parameters: a ¼ 1200, b ¼ 5� 10�7. The response is measured by a PZT sensor situated

opposite the exciter as depicted in Fig. 1.
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Fig. 11. Specimen PE4 (hollow polyurethane cylinder, exterior diameter 8 cm, longitudinal dimension 4.0 cm, thickness 1.5 cm) suspended

by nylon threads. The PZT exciter (visible) and the sensor situated on the opposite side (not visible in the photograph) are mounted using a

double-sided adhesive tape.
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Fig. 12. Vibrational response of specimen PE4 (hollow polyurethane cylinder): comparison between the 3D viscoelastic FEM-computed

(with a ¼ 400, b ¼ 1:5� 10�5) results and the experimental results.
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4.9. Quality and damping factors of melamine and polyurethane

Using the previously mentioned inversion procedure of the measured response, we recovered the Rayleigh
damping factors, and the variation of the attenuation factors with frequency, of the two cellular materials:
melamine and polyurethane.
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modes dissipate almost completely.
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The recovered modified Maxwell model parameters for the two materials are presented in Table 2, whereas
Q�1GM is plotted in Fig. 13.

The comparison in Fig. 13 reveals that cellular melamine exhibits a larger attenuation than cellular
polyurethane, particularly in the lower frequency range.
4.10. Possible sources of errors in the determination of the material properties

The major assumption made in this technique of recovery of the mechanical parameters is their non-
frequency dependence in the frequency range studied. Measurement methods of the frequency dependence of
dynamic Poissons ratio and loss factor can be found in Refs. [23,39,40].
4.10.1. Anisotropy and geometric errors

Natural cellular materials like bone and wood are anisotropic due to their weight-supporting nature.
Most foams are anisotropic to some extent due to the foaming process [8]. This is manifested in the

resonance frequencies. The mechanical parameters used to compute these frequencies for the modes in the
longitudinal direction will not give the correct values for the transverse and radial ones. A way to uncover
anisotropy in the material is to compute the frequencies using an isotropic elastic model (e.g., for specimen
PE4, which has been precisely cut by a machine), and then to compare the resonance frequencies for the
breathing, radial, purely bending and longitudinal modes (here 820, 1091, 1387 and 2100Hz, respectively). We
have done this and found that these frequencies are very close if not equal to the measured ones (Table 2).

The thick disc-like specimens employed herein were cut using a cylindrical cutter made from a tin can (10 cm
diameter). This simple tool can introduce some errors in the shape (supposed to be a thick circular plate
or a thick disc in the computations) and lead to a poor determination of the volume and thus of the density of
the material.

The solution of this problem is to scan the specimen with a laser to retrieve the exact geometry. Although
this can solve the problem in the context of our inversion method, it does not solve the problem if the (disc-
shaped) sample were to be characterized within a standing wave tube (due to the circumferential edge
constraints entailed by the mounting conditions [41,42]). The acoustical measurements in the standing wave
tube have been found to be less likely influenced by the edge constraints introduced by the mounting
conditions if thin samples with an important diameter are used [41]. What may appear as effects due to
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anisotropy can actually be caused by discrepancies between the actual specimen geometry and model
geometry.

5. Conclusions

An experimental technique, employing a bonded (to the specimen) PZT exciter and sensor (which was
shown to actually measure the strain at point), was developed to generate real data concerning the linear
response to small-amplitude sinusoidal excitations of (e.g., cellular) materials that exhibit a nonlinear response
even for moderate excitations.

An inversion procedure was described whereby the experimental linear response is compared to a model
response in order to recover the homogenized elastic moduli and damping parameters of two types (melamine
and polyurethane) of cellular materials.

The choice of the theory for computing the model response was shown to be a very important issue in that
the model response is computed hundreds of times during the inversion. Ideally, the theory should incorporate
all the important physics of the phenomena related to the generation of vibrations in the porous specimen.
Although the Biot theory largely fulfills this role, it is very computationally intensive. We employed the Biot
theory (implemented by our 3D FEM numerical code) to generate reference solutions whereby we evaluated
another candidate theory. The latter is a classical one deriving from the elastodynamics of linear, isotropic,
homogenized, elastic continua with the inclusion of Rayleigh damping (shown to be rheologically equivalent
to a modified Maxwell model) to account for anelastic effects. This (viscoelastic) model was also translated
into a 3D FEM numerical code which is far less time-consuming than the Biot model-based code. The results
deriving from the two models were compared and shown to be quite similar, thus justifying the further use of
the viscoelastic model in the inversion procedure.

The inverse problem of the retrieval of the elastic moduli and damping factors was then solved and shown to
give rise to a unique solution (i.e., the cost function is convex and exhibits a single global minimum).
Arguments were given, and results were shown, that indicate why it is advantageous to employ resonance
frequency data for more modes in order to improve the precision and rate of convergence of the inversion. The
sources of error, i.e., geometrical uncertainty and anisotropy of the specimens, of the recovered parameters
were identified and discussed.

The transduction, measurement and inversion techniques developed herein for very low-amplitude
excitations have thus been shown to enable the avoidance of the problems (i.e., recovered parameters that
depend on the level of the excitation) encountered when the mechanical characteristics of materials, such as
those of a cellular nature, are identified using vibrational response data that are clearly nonlinear even for
moderate levels of excitation.

Appendix A. The steady-state linear dynamic equation

In the formulation of the steady-state linear dynamic analysis it is assumed that the structure undergoes
small harmonic vibrations about a deformed, stress state defined by a subscript 0.

The procedure is to conform to the principle of virtual workZ
O
des : ss dOþ

Z
O
rd u :€udOþ

Z
O
rad u :_udO�

Z
qO

d u : t dS ¼ 0, (A.1)

where a is the mass proportional damping factor, t the surface traction and des the strain variation compatible
with the displacement u.

The discretized form of this equation is

dunfMnm €um þ ðCnm
ðMÞÞ þ ðC

nm
ðKÞÞ _u

m þ Knmum � Png ¼ 0, (A.2)

wherein:
�
 Mnm ¼
R
O rNn:Nm dO is the mass matrix,R
�
 Cnm
ðMÞ ¼ O arNn:Nm dO is the mass damping matrix,



ARTICLE IN PRESS
E. Ogam et al. / Journal of Sound and Vibration 313 (2008) 525–543 541
�
 Cnm
ðKÞ ¼

R
O bBn : Del : Bm dO is the stiffness damping matrix,� �
�
 Knm ¼
R
O

qBn

qum
: s0þBn : Del : Bm dO is the stiffness matrix,R
�
 Pn ¼ qO NntdS is the external load vector,

�
 Del is the elasticity (moduli) matrix for the material,

�
 B is the strain variation matrix,

�
 b is the stiffness proportional damping factor and

�
 Nn and Nm are referred to as shape, basis or interpolating vector functions [38].
Appendix B. The modified Maxwell model

The stress–strain relationship for this model (Fig. 3) is given by

sþ
Z1
E

qs
qt
¼ ðZ2 þ Z1Þ

q�s

qt
þ

Z1Z2
E

q2�s

qt2
, (B.1)

where E is the elasticity constant of the spring and Z1 and Z1 are the viscosities in the dashpots.
Taking periodic variations for the stress and strain (sðtÞ ¼ s0 expðjotÞ, �sðtÞ ¼ �s

0 expðjotÞ), the complex
modulus Ec is given by

Ec ¼
s0
�s
0

¼
�Z1Z2o

2 þ jEðZ2 þ Z1Þo
ðE þ jZ1oÞ

. (B.2)

For weak-to-moderate Rayleigh damping, the dissipation factor Q�1 [31] and the damping ratio x are
related by

Q�1 � 2x. (B.3)

For a linear, viscoelastic rheological model of complex modulus E� ¼ ER þ jEI , the expression of the quality
factor is Q ¼ ER=EI , and, for this particular generalized Maxwell model:

Q�1GM ¼
EðZ1 þ Z2Þ

Z21o
þ

Z2
E
o. (B.4)

The relationship between a and b and the mechanical parameters of the generalized Maxwell model is then
given by

a ¼ EðZ1 þ Z2Þ=Z
2
1; b ¼

Z2
E
. (B.5)

Appendix C. Biot model

The porous media are coupled to a fluid and the displacement field is computed using the Biot theory
formulated in the variables fu; pg (u being the mean displacement field of the frame and p the mean sound
pressure in the fluid phase over a homogenization volume) by Atalla [35].

A variational formulation of the governing differential equations leads to:Z
O
ŝsðuÞ : esðd uÞdO� o2 ~r

Z
O

u :d u dO� ~g
Z
O
rp:d u dO�

Z
qO
½ŝs: n	:d u dG ¼ 0, (C.1)

f2

o2 ~r22

Z
O
rp:rdpdO�

f2

~R

Z
O

pdpdO� ~g
Z
O
rdp: u dOþ

Z
qO

~gun �
f2

o2 ~r22

qp

qn

� �
dpdS ¼ 0, (C.2)

wherein:
�
 d u and dp denote admissible variations of u and p,

�
 es is the solid phase strain tensor,
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�
 ŝ s is the stress tensor of the solid phase of the material in the vacuum,

�
 ~r and ~r22 are the apparent densities of the solid and the fluid phases,

�
 ~g is a coupling factor between the two phases,

�
 eQ and eR are poroelastic coefficients whose expressions can be found in Ref. [35],

�
 eQ and eR are related to Kb, the bulk modulus of the frame in vacuo, to Ks, the bulk modulus of the elastic

solid composing the frame, and to K̄f , the bulk modulus of the air in the pores,

�
 O stands for the porous material volume, qO denotes its boundary, subscript n denotes the normal

component of a vector and n is the unit external normal vector of the boundary surface qO.
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